We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 185,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
3

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter

Swarm Computing: The Emergence
of a Collective Artificial
Intelligence at the Edge of the
Internet

Laisa Costa de Biase, Geovane Fedrecheski,
Pablo Calcina-Ccori, Roseli Lopes and Marcelo Zuffo

Abstract

Billions of devices are interacting in a growing global network, currently
designated as the Internet of Things (IoT). In this scenario, embedded computers
with sensors and actuators are widespread in all sorts of smart things, transform-
ing the way we live. The complexity produced by the enormous amount of devices
expected in the future IoT leads to new challenges. Furthermore, current IoT archi-
tectures are highly cloud-centric and do not take advantage of all its potential. To
overcome these issues, we propose Swarm computing as the emergence of a collective
artificial intelligence out of a decentralized and organic network of cooperating
devices. The major contribution of this article is to provide the reader with a com-
prehensive vision of the key aspects of the Swarm Computing paradigm. In addition,
this article addresses technical solutions, related projects, and the Swarm Computing
challenges that the research community is called to contribute with.

Keywords: swarm computing, internet of things, collective intelligence, distributed
computing, ubiquitous computing, computer architecture

1. Introduction

In this chapter, we present the Swarm Computing paradigm. It is expected to be
the evolution of the Internet of Things, the edge of edge computing, in which devices
gain protagonism over cloud, leveraging a true open computing resource-sharing
infrastructure.

The Internet of Things (IoT) is a global infrastructure that connects objects from
the physical world and provides advanced services [1]. Computers with sensors
and actuators are embedded in everyday objects, making them smart. In traditional
deployments, these devices retrieve huge data that generates knowledge with big-data
analysis. The global Internet of Things (IoT) market was valued at US$ 201 billion in
2022 and is projected to reach US$ 410 billion by 2026 [2]. IoT advances are positively
impacting diverse areas such as home, manufacturing, medicine, and urban life.

1 IntechOpen

Edge Computing — Technology, Management and Integration

Due to their growing computing power, embedded devices are gaining higher
responsibilities that, in the first IoT generation, were exclusively performed in the
cloud. This paradigm, called Edge Computing, breaks the centralized model and
reduces the amount of data sent to the cloud for processing and the response time
for critical applications. Furthermore, the edge computing paradigm increases the
security and privacy of data by avoiding the need for transmission and the overall
reduction of costs of the cloud infrastructure [3, 4]. Among the main challenges in
edge computing is the programmability of the heterogeneous platforms running in
the edge, with different computing capabilities, operating systems, and program-
ming languages. The naming of the enormous number of available things is also
an unsolved challenge due to the various network protocols available and the lack
of standardization. Privacy and security are among the most important challenges
in terms of authentication and authorization for the use of devices. Finally, a com-
mon model for data abstraction, a comprehensive service management system, and
metrics for optimization are among other relevant challenges.

We compare this expected evolution of the IoT to the changes that happened on
the Internet. First, the Web was a provider of static content. Then, with Web 2.0, it
became participative and democratic; that is, common people assumed a leading role,
publishing their content and even trading goods. Finally, Web 3.0 emerged, favoring
the culture of sharing, in which individuals exchange resources for mutual benefit
(trading an English class for a text review, for example). Similarly, we expect that with
the increasing computing power, smart objects will play a major role in the future IoT,
by increasing their participation in data processing and establishing cooperative rela-
tions. Cooperation will occur through the spontaneous and autonomous organization
of devices to solve problems collaboratively, resulting in the emergence of collective
artificial intelligence. We call this network of autonomous cooperating devices Swarm
computing.

The Swarm is a bio-inspired framework of autonomous smart objects. In parallel
with swarms of bees, with specialized bees contributing to a common goal; the Swarm
is composed of specialized devices whose interaction solves a common problem.
Swarm computing behaves like an organism and shows an organized behavior that
results in an emergent collective intelligence. Analogously to specialized honeybees,
and the Swarm consists of heterogeneous devices, which might range from high-
power processing servers to low-power wearable devices.

Human participation in the Swarm network is also of crucial importance, since the
Swarm is at the service of humans. It shall be able to identify and meet real-life needs.
Being able to “extract” needs — either inferring from the context or through direct
human-interaction. It is especially relevant since the Internet of Things of the future
will be composed of thousands of devices per human, new interaction mechanisms
avoiding individual configuration and direct control are demanded.

To illustrate an application of the Swarm in our daily lives, we present the follow-
ing example. Penny, Alice’s cat, goes every day for a walk through the neighborhood
and is back by dinner time. Once she did not come back, and Alice was really worried.
How could the Swarm be used to help Alice to find her cat? Alice could simply ask
for Penny, and opportunistically, the Swarm would gather sensors to capture Alice’s
request. Any microphone could be used, from Alice’s smartphone or from a baby
monitor. This request could be done at a high semantic level, asking directly “Where
is Penny?”, and local or remote resources could be used to realize that Penny is a cat
and which her attributes are (appearance, weight, etc.). Alice home-network devices
could be used to help find Penny: surveillance cameras, a baby monitor, and motion

2

Swarm Computing: The Emergence of a Collective Artificial Intelligence at the Edge...
DOI: http://dx.doi.org/10.5772/intechopen.110907

sensors that are usually used to automatically turn the lights on. However, it is not
enough if Penny is out of the house. This way, the Swarm allows for actively gathering
resources from other networks, such as the surveillance cameras from the street. The
images could be processed by a computer vision service available in the cloud. Each
usage of a third-party resource has associated retribution in the Swarm economy that
will allow other owners to have priority to their own requests. The Swarm could also
be applicable in other scenarios where resource sharing is key, such as looking for a
missing person or object, in agribusiness with drone sharing, and in smart buildings
by enabling automatic sharing of processing nodes, projectors, displays, windows and
doors automation systems, HVAC systems, sensors, and many other devices.

The contribution of this paper is to provide a comprehensive description of the key
aspects of the Swarm vision, focusing on its principles and challenges. We also review
prior work and present an application example. Additionally, we present our initial
architecture and implementation.

This is relevant for providing a software infrastructure that allows an open and
global network of devices that can collaborate sharing resources with each other.
Current Internet of Things implementations are restricted to niches and proprietary
networks. An example is the home-network standards, such as UPnP which con-
nects devices in the household environments, connecting TVs, computers, and
smartphones, among others. On the other hand, the Swarm paradigm aims to provide
technologies and strategies to connect billions of heterogeneous devices in a flexible
and scalable way.

2. Other initiatives

While the IoT term refers to a large network of connected devices, some of those
ideas were anticipated with other names. Already in 1994, the term ubiquitous
computing (UC) [5] was used to describe a vision where computing devices are wide-
spread at all scales throughout everyday life. While vastly present in human activities,
this computation is almost invisible and does not draw attention to itself. This para-
digm is part of the IoT current vision, embedding intelligence in everyday objects.

In 2001, Autonomic Computing (AC) [6] was proposed as a solution to the capital
challenge that complexity represented for the future of computing systems, whose
management goes beyond human capabilities. The AC approach deals with complex-
ity reproducing the human autonomic nervous system, consisting of self-configura-
tion, self-optimization, self-healing, and self-protection. This need for self-managed
systems gains renewed importance in the context of the increasing complexity of the
IoT, although this previously proposed solution was too complex to deploy.

The Swarm was inspired by a work that made an analogy between biological and
digital ecosystems, in 2007 [7]. It briefly mentions the term swarm to refer to a set
of computing agents interacting and engaged in solving a common problem. Four
aspects were highlighted for digital ecosystems: interaction and engagement, balance,
domain clustered and loosely coupled individuals, and self-organization. In addition,
semantic Web technologies were recommended for information exchange, attribute
modeling, and integrity check.

The Social IoT approach [8] looks forward to advancing the current IoT vision
presenting an alternative to the producer-consumer paradigm, by collaborating with
other counterparts toward a common goal, as the Swarm does. This approach, how-
ever, proposes the implementation of social-like capabilities to the objects, enhancing

3

Edge Computing — Technology, Management and Integration

trust between “friends” objects. The inter-object relationship is related to the human
social network.

In the last decade, the cloud has emerged as the principal responsible for data
storage and processing that is provided and consumed by personal computers and
mobile devices. The IoT adds a communication layer between the physical and logical
(cyber) world. Initially, in the IoT first generation, devices are used as data providers.
In the second IoT generation, devices are empowered, distributing the processing.
This new paradigm is exploited in the Fog Computing [9] and Edge Computing [3]
approaches. These definitions use the general idea of performing processing closer
to the devices. In Fog Computing, network equipment, and PCs execute part of the
processing. In the Edge computing approach, devices do it by themselves. The Swarm
vision is aligned with the Edge Computing paradigm, as it aims to make devices less
dependent on the cloud and favors a more decentralized IoT.

The Swarm term, applied in the IoT context, was first mentioned by Jan Rabaey
in 2008, as a sensory swarm, connecting trillions of sensing and actuating devices
connected through a single abstraction platform at the edge of the cloud [10, 11].
Subsequent work led to a more concrete definition of the Swarm [12, 13], proposing
an initial architecture. They also outlined a common framework for devices to com-
municate and share resources, called Swarm OS [14], that was later developed.

3. Major challenges

We identify five main challenges to achieve the Swarm realization: communication
and cooperation among devices, human-interaction with the network, support for
resource-constrained devices, security, and the inherent network complexity.

3.1 Communication

Communication is the first step to establishing cooperation among devices. The
Swarm is a highly heterogeneous environment that does not pose restrictions to its
participants, configuring an open system. Traditional standards enable communica-
tion in open systems, but they generate niches (e.g., digital home, industry, etc.),
limiting system evolution. This flexibility issue comes from static documents that
generate products in which it is necessary to run firmware updates to accommodate
standards reviews. Open systems pose security risks as well. Since, in IoT, many par-
ticipants are resource-constrained, traditional security solutions are not applicable.
Furthermore, at the Edge of the Internet, there is a fragmentation of IP and non-IP
protocols, IoT technologies such as 6LoWPAN, Bluetooth, LoRa, and Sigfox, which
causes fundamental interoperability problems. In summary, this challenge is related
to how to achieve an open system with flexibility, broad scope, and security. Also,
how to perform interoperability among Swarm agents, considering their different
computing capabilities and network protocols.

3.2 Cooperation

In the Swarm context, cooperation consists of sharing resources among partici-
pants to accomplish high-level tasks. The result of this cooperation will manifest as
a collective intelligence that emerges from the Swarm. Aspects that have to be dealt
with are the discovery of resources spread around the globe and the autonomous and

4

Swarm Computing: The Emergence of a Collective Artificial Intelligence at the Edge...
DOI: http://dx.doi.org/10.5772/intechopen.110907

spontaneous orchestration of the shared resources, that is, how to use and “embed”
this resource inside the consumer’s business logic in execution time (in opposition to
programming time) without human intervention. This cooperation must be bal-
anced, satisfying objectives from individuals as well as from the Swarm participants
as a whole. In this context, new concepts arise, such as trust, virtual currency, bill-
ing, reputation, and a full virtual economic system. This phenomenon represents a
perfect parallel to a growing trend in the current world economy called the sharing
economy, which favors the sharing of physical resources over the acquisition of new
ones. Examples are Uber and Airbnb. The resource sharing in the Swarm represents
its digital equivalent. A consequence is consumption reduction and better global use
of resources.

3.3 Resource-constrained devices

Resource-constrained devices are an essential segment of the current IoT par-
ticipants, whose operation has a strong focus on energy saving and miniaturization.
The energy consumption of these wireless technologies has a significant impact on
battery life. The device consumes energy to collect data by sensing the environment
and processing and communicating the data. Therefore, all system parts, including
software and hardware parts, should be considered to optimize energy consumption.
Wireless energy harvesting from environmental sources like solar power is one of
the best ways to supply energy for many sensors from the hardware perspective. It is
also essential to consider the way how the IoT devices communicate to improve the
efficiency of existing power sources in the device considering the data rate of IoT ter-
minals and distances. These specifications should be considered in a communication
system to efficiently use power and spectrum. Energy-efficient devices are imperative
to make the existent applications greener and more environmentally friendly. On the
other hand, to achieve a decentralized swarm of devices, increasing computer activ-
ity is expected to be delegated to the edge of the network, allow more efficient use
of resources, provide highly responsive services, and enforce a privacy policy. This
conflict represents a significant challenge to implementing the Swarm network.

3.4 Human-interaction

Although the Swarm consists of a nonbiological network, human beings play a
central role in the Swarm, as it assists humans to interact with the physical world
and with other humans. The complexity of the Swarm, involving billions of devices,
makes it unmanageable by a person. Thus, a significant challenge is to develop inter-
faces with high-level semantics and proactive behavior. An interface with high-level
semantics abstracts the network’s actual resources allowing humans to focus on the
intended result instead of focusing on the resources management and, in the process,
to make this goal to be achieved. Additionally, the Swarm has the potential to explore
an opportunistic gathering of available interfaces exploring the diversity of devices
capable of interacting with people. Proactive behavior emerges from past interac-
tions, extracting policies automatically. For example, an agent can infer that, for a
given person, comfort takes priority over power saving, which will leverage a policy
where the air conditioning will work almost continuously. A person that prioritizes
power saving will have a home where the temperature oscillation is more tolerated so
the air conditioner will often be off. Additionally, known preferences may be shared
among agents to support this proactivity. For example, personal ambient temperature

5

Edge Computing — Technology, Management and Integration

preference may be shared with occupants in a room with an HVAC (Heating,
Ventilation, and Air Conditioning) system to maximize comfort.

3.5 Security

A large number of devices collecting and sharing data will open questions about
what kinds of data are being shared, who has the right to perform this sharing, and
how this data can be protected. Since the devices composing the Swarm will com-
municate openly across different networks, they will be exposed to a diverse array
of cyber threats. Therefore, guaranteeing the privacy and trustworthiness of data
in transit will represent a significant challenge. This is aggravated by the fact that,
while many devices in the IoT are resource-constrained, cryptographic algorithms,
such as those based on asymmetric cryptography, require significant processing and
memory resources. Furthermore, since the messages will likely traverse different
kinds of networks, the protocols for message security must be able to cope with such
a heterogeneous environment. While a possible solution lies in protecting mes-
sages at the application layer, the currently accepted protocol for Internet security
(Transport Layer Security—TLS) works at the transport layer. Another important
challenge concerning security is device identification. Network identifiers such
as MAC and IP addresses are easily spoofed, and more secure approaches such as
certificates and cloud accounts depend on centralized architectures [15]. This raises
questions and challenges regarding the need for secure and decentralized identifica-
tion solutions for IoT devices [16]. Finally, while Swarm devices are expected to
collaborate, they must do so in a controlled manner to prevent security issues. What
is needed is a high-level authorization mechanism that device owners can use to
specify the collaboration rules. Challenges in this respect arise from the global scale
and decentralized nature of Swarm computing.

3.6 Complexity

The Swarm has characteristics of a complex network: autonomy, connectivity,
self-organization, emergent behavior, and co-evolution with an environment, and
billions of autonomous and interconnected computing devices interact. Among a
diversity of resources, there are sensors and actuators. Sensors make the system sub-
ject to uncertain and unpredictable events from the physical world, and actuators will
impact the physical environment, creating a symbiotic ecosystem. The opportunistic
organization of these devices will provide a robust self-organization structure that is
perceived as intelligent since it is capable of evolving over time.

4. Swarm principles

The Swarm computing approach can be better understood by examining its
two underlying principles: resource sharing and autonomy. These principles can be
subdivided into more specific aspects that guide the Swarm evolution, as shown in
Figure1l.

Autonomy confers devices to the ability to share resources without needing
manual input from humans (self-organization). These automatic interactions are
not programmed into the system beforehand but emerge naturally during execution
time (spontaneity). As a result, the participants may encounter optimized paths and

6

Swarm Computing: The Emergence of a Collective Artificial Intelligence at the Edge...
DOI: http://dx.doi.org/10.5772/intechopen.110907

Scalability

Distribution

Self-Organization

Rse::r?;;e Swarm [— | Autonomy |—.| Spontaneity I
=]

Figure 1.
The Swarm principles and their subsumed aspects.

risky interactions over time, from which they must learn to unexpected situations.
Autonomy can be further subdivided into the following aspects:

* Self-organization: when a task or problem needs to be solved, the Swarm devices
must be able to organize themselves to achieve the desired results. The devices
should perform this behavior, that is, not requiring step-by-step commands from
a human operator or a centralized entity.

* Spontaneity: Swarm devices should not necessarily only work in a predefined
way. Rather, they should be able to infer changes in their context and react
properly to new and unexpected situations.

* Adaptiveness: since each Swarm device can compute only a fragment of the global
context, certain operations may be carried out in suboptimal ways, especially
when confronted for the first time. Therefore it is important that devices can learn
from previous experiences and adapt to perform better in future scenarios.

Resource sharing allows a set of entities (distribution) to provide and consume
resources from each other for mutual benefit (cooperation). These entities may have
different amounts (heterogeneity) of resources to share, use open and interoperable
protocols (openness), and cooperate independently of their physical structure and
location (dematerialized). Finally, resources can be composed at different levels
(granular), and their scope may range from local to global (scalable). The following
aspects are key to enabling resource sharing in the Swarm:

* Scalability: refers to the capacity to support a great number of participants,
achieving billions, with global and local communication capability, comprising
machine-to-machine and over-the-Internet interoperation;

* Distribution: the participant devices act without a central coordinator;

* Openness: the conditions to connect and interoperate with the Swarm are
open, widely accessible, allowing for new products and services to be created

Edge Computing — Technology, Management and Integration

by anyone. Despite, is that, security, and privacy risks, it makes systems more
powerful (efficient, through sharing of resources), more resilient (by the use
of redundant resources through dynamic reconfiguration), and more capable,
enabling applications that have not been realized yet;

* Cooperation: allow a set of entities to provide and consume resources from each
other, exploring synergies and generating economy;

* Heterogeneity: the Swarm participants are diverse, with different functions,
complexity, processing and communication capabilities, operating systems, etc.;

* Dematerialization: participant resources are exposed and shared, making the
physical boundaries to lose importance;

* Granularity: the cooperating services could be understood as a set of reusable
components that can be organized to compose bigger ones, putting together a
hierarchy of components.

The Swarm principles act as guidelines for the research and development of the
Swarm computing paradigm and its applications. For example, imagine a set of
cameras and smart doors that cooperate. When a person approaches the system, the
cameras will tell the doors whether to open or not. Or in an emergency scenario,

a car passing by accident can automatically share a danger alert with surrounding
devices. Both examples work without human intervention (autonomy) and create
value through cooperation (resource sharing). By combining these two principlesina
cohesive model/platform/abstraction, the Swarm creates a new era for the Internet of
Things.

5. Architecture

In this section, we propose our architecture for the realization of the Swarm
Computing vision.

5.1 Processing balance

In the Swarm, devices are used not just for sensing and actuation, but also for host-
ing applications and business logic. This leads to architectural differences between
the Swarm and other IoT solutions. Although the Swarm shares principles with the
Edge Computing vision, many Edge Computing architectures still run applications on
remote servers in the cloud, while edge devices are limited to preprocessing tasks.

Most IoT architectures are organized into three layers: perception/actuation,
transport, and application. The perception/actuation layer is responsible for gath-
ering information from the physical world and acting on it. The perception layer
comprehends the devices with embedded electronics, particularly sensors and actua-
tors. The transport layer connects devices to the cloud; it includes gateways and the
network infrastructure (i.e., the Internet). The application layer includes IoT middle-
ware and applications [17]. Other works split the application layer into three: Business
Intelligence, Application, and Middleware [18]. These layered models evidence that
despite the generic definitions of the IoT term, their architectures and solutions are

8

Swarm Computing: The Emergence of a Collective Artificial Intelligence at the Edge...
DOI: http://dx.doi.org/10.5772/intechopen.110907

centralized in servers in the cloud. In general, the application runs on a server in the
cloud and devices become information providers.

Current Edge Computing efforts promote the participation of sensors and
gateways in data processing and analysis [18]. The layered architecture in Edge
Computing puts preprocessing between the layers of perception and transport. This
preprocessing at the edge includes monitoring, storage, and security. While this
approach aims to reduce the strong centralization of cloud computing, it still relies on
the cloud and centralized applications.

The Swarm meets the goal of decentralization better, empowering devices in the
autonomous composition of new services. In the Swarm, devices seek resources from
other devices to cooperate and achieve complex goals. In addition, applications run
on the devices themselves, thus creating a large and scalable network of distributed
processing.

5.2 Distribution of resources

Cooperation in the Swarm is achieved through resource sharing. We use a
microservices approach to expose device resources. Microservices are an evolu-
tion of traditional service-oriented architectures, to provide better scalability,
performance, loose coupling, functional independence, reusability, resilience,
and cost [19].

In the past decade, Service-Oriented Architecture (SOA) became a popular
paradigm for integrating distributed services across organizations. SOA is a software
design pattern based on the dynamic selection of services to other applications.

The most serious drawback of SOA is its centralized integration, based on a service
bus. Microservices move intelligence to the endpoints, eliminating this centralized
integration. In addition, each service is either independent or broken into smaller
independent services.

We propose two kinds of microservices in the Swarm: platform and applica-
tion. The platform microservices consist of common microservices that the Swarm
participants use to support the interaction among them. An example of a platform
microservice is the discovery service, which helps to locate resources in the Swarm. In
addition, swarm devices offer application microservices to share their resources, such
as a service to read a temperature sensor.

While an application in the Swarm may run in isolation, the true potential of
the Swarm lies in service composition. When a service uses other services, it creates
a graph of resources. Devices that own those resources form groups of interacting
participants in the Swarm.

5.3 S warm OS

IoT frameworks usually provide a software module in the cloud, called Broker,
that helps service consumers to access service providers. Our Swarm OS is a Broker
enhancement. So the IoT Broker is a Swarm Broker or, finally, a Swarm OS.

MQTT [20] is a popular IoT framework based on the publish/subscribe protocol.
The MQTT Broker is a central entity that manages data publications and subscrip-
tions. The IoT Broker Generic Enabler is a component of the Fiware middleware [21]
that interfaces with devices providing publish/subscribe managements and associa-
tions between device-level and things-level descriptions. The Fiware middleware
resides in a server in the cloud.

9

Edge Computing — Technology, Management and Integration

The Swarm Broker is conceptually different. It is a software agent installed on each
device, turning it into an “insect,” that is, a member of the Swarm. The Swarm Broker
is responsible for providing the platform microservices that provide service discovery;
a distributed registry of services; access control to resources; protocol binding; policy
management; service-level agreements; semantic mediation; and optimization.

As the Swarm is an open and heterogeneous environment, we propose a minimum
Swarm Broker that includes a core set of the platform microservices to be installed on
every device [22]. Advanced features are provided by more complex Brokers that run
on more capable devices. Proxy servers can serve legacy or less capable devices that
are unable to run the minimum Broker.

Device interaction in the Swarm happens in three phases: registration, cooperation
initiation, and interaction support. In the Registration phase, services such as cam-
eras, temperature sensors, and smart doors register themselves in a Swarm Broker,
becoming available to be shared within the Swarm. The Cooperation Initiation phase
starts when a Swarm participant demands a resource and is concluded by a service-
level agreement establishment with the best available resource at the moment. Finally,
the interaction support phase occurs when cooperation is already established and
running. A direct link between the service consumer and the provider is established,
while the Swarm Broker acts as a helper by providing contract maintenance, protocol
adaptation, optimization, authentication, and access control.

The Registration phase consists of the check-in of a service provider to the
Swarm. As each device has at least a minimum Broker inside, service providers will
communicate with their own local Swarm Broker (i.e., in the same device), register-
ing its resources. A service description is registered, containing all the necessary
information to verify the resource’s suitability and then access the service, such as the
functional description, quality of service, and required retribution. Once the resource
is registered, it is available to the Swarm for sharing. The registration is done in a local
registry of the Broker and may be sent to another Broker that would act as a service
directory. This strategy allows for an opportunistic registry that can be centralized,
totally or partially distributed accordingly to the capabilities of the available Brokers
at the moment.

Flexibility is achieved by using semantics in the service descriptions [23].
Semantics uses ontologies to define terms and their relationship, allowing to build
standardized protocols for niches that can be expanded or interconnected by linking
various ontologies together. For example, the services used in home networking, such
as a television and a baby monitor, may connect to services from the city, such asa
public surveillance camera pointing to the street. If a company association that deals
with home network defines an ontology in which the service “camera” and “display”
are defined; other association of companies that deals with smart cities may create
an ontology with their own terms, such as “city_cameras,” “semaphore,” “surveil-
lance_camera” and “biometrics_camera.” If an application uses the television inside
a house to display images from a street camera, the Swarm may automatically do this
mapping linking both ontologies to finding the equivalences.

The Cooperation Initiation phase is started when a Swarm participant, a Service
Consumer, searches for a given resource on its local Swarm Broker, that is, the Broker
that is running in its same device. The local Swarm Broker that has received this
request will then communicate with other Brokers in the Swarm to identify the best
suitable resource and then negotiate the establishment of a service-level agreement.

The discovery has four stages. First, the Broker searches in its local registry.
Second, the Broker sends a query to other Brokers that act as third-party registries.

10

Swarm Computing: The Emergence of a Collective Artificial Intelligence at the Edge...
DOI: http://dx.doi.org/10.5772/intechopen.110907

Third, a bootstrap mechanism defines the address of the Brokers to forward the
request. This mechanism is complemented by a history of past interactions and

a heuristic search for Broker’ addresses. Third, the request to locate the service is
forwarded to the local network, using direct communication, such as multicast. The
fourth mechanism uses a mediation service that expands the discovery request to
equivalent services, based on a functionality taxonomy, instead of the exact matching
of a keyword or hash code.

This discovery returns a set of services that meet the given functional require-
ments. The resulting set of services is evaluated from the quality of service point of
view, verifying policies about access control, priorities, and retribution mechanisms.
A contract is then established with the best service provider available, setting a
service-level agreement. To achieve fairness, the Swarm supports a microeconomy
model with credits exchange for sharing a resource (payments) and a reputation
system. Finally, the Swarm Broker returns this contract and the service information to
the participant that requested the service.

The discovery process returns directly the operation that the consumer will use
to access the service, allowing direct communication between service consumer and
provider; since the operation is not predefined and is discovered just as the provider,
it is called as automatic execution.

Interaction Support occurs when cooperation is already established and running;
thus, there is a direct link between service consumer and provider, and the Swarm
Broker may provide some support services: contract maintenance, protocol adapta-
tion, general optimization, authentication, and access control. Currently, just access
control and CoAP-HTTP binding are supported. The Swarm Brokers store and pro-
cess access control policies and rules, having the role of supporting decisions of their
local service providers and participating in access control enforcement [22]. Proxies
are platform services that are ideally transparent and bidirectional, creating a unified
virtual network that merges distinct physical networks. This type of proxy intercepts
messages and redirects responses to pass through them [23].

6. Implementation approach

So far, we have presented the Swarm challenges, principles, and architecture,
which include the Swarm Broker as a key enabler. This section discusses the imple-
mentation aspects of the Swarm OS, including an overview of the technologies
employed and the services it implements. As the Swarm is a heterogeneous platform,
two versions of the Broker have been developed: a Minimum Broker and a Full
Broker. We start by briefly describing the former and then proceed to give more
details on the latter.

The minimum Swarm Broker implements only two essential services that enable
the device to be discovered by other Swarm devices: Registry and Discovery. It was
implemented using Lua programming language, targeting a node with an ESP8266
microcontroller. This implementation has only 2% of the size and uses 0.02% of
memory compared to the full Swarm Broker implementation [24]. While this proof-
of-concept can be enhanced, particularly by adding access control enforcement to
protect its services, it showed that even highly restricted devices could participate in
the Swarm network while relying on more powerful nodes for more complex services.

The full Swarm Broker is implemented using the Elixir programming language
and has been tested on Linux laptops, servers, and single-board computers. As shown

11

Edge Computing — Technology, Management and Integration

in Figure 2, it follows a protocol-agnostic architecture, in which the Broker Core mod-
ule executes business logic, and is separated from protocol-specific modules, such as
Broker HTTP and Multicast. A Broker HTTP Client is also present to help the Swarm
Broker call other Swarm Brokers and services independently. As application services
may also use the Swarm Broker Client, it is integrated within the Broker as an external
library. Modules that implement alternative protocols also exist, such as the Swarm
Broker CoAP [25] and its respective Client, as shown in faded colors in Figure 2.

The Swarm Broker implements the following platform services:

* Registry: responsible for keeping a record of available services in the Swarm.
It receives a service description file serialized as JSON-LD via the Broker HTTP
interface and saves it into memory. During registration, the Registry will verify
whether there is a Semantic Registry Service available, to whom it will forward
the service description as well. The Semantic Registry Service enhances the capa-
bilities of the Swarm Broker by allowing service inference during the discovery
process.

* Discovery: allow the search of services in the Swarm network. It receives a
request containing a Query Description and responds with a list of matching
services. The Query Description is a JSON-LD file containing parameters that
specify the desired services. For example, a query may include “type: camera,” to
indicate that it is looking for camera services.

* Distances: stores the distance between a service and a Bluetooth beacon. It
receives periodical updates from services capable of measuring their own
distance against beacons. These distances can then be used to refine a Discovery
query, for exmaple, search for services that are up to three meters from the TV.

* Access control: maintains and enforces access policies among services. It is
divided into a Policy Decision Point (PDP), responsible for evaluating poli-
cies against requests, and a Policy Administration Point (PAP), responsible for
managing policies.

* Policy sharing: allows policy sharing among services. The current implementa-

tion uses the Discovery service to discover other Swarm devices, and then pulls
and pushes the access policies, according to the needs of a policy administrator.

, N\
| Broker !
: Nerves :
| oona DBrOker |
I Cake HTTP [T |
: : I I
incoming | Broker - Eé:'l?:;' Broker outoing
communcations | Bk Core | i HTTP Client comm.
roker
| A | CoAP
’ MB’I“JZ%: Multicast |—*" |
uit
1 SSDP
: CoAP : external, reusable codebases
s A J (included as libraries)
loTBroker: a single codebase
Figure 2.

Swarm Broker support for interaction.

12

Swarm Computing: The Emergence of a Collective Artificial Intelligence at the Edge...
DOI: http://dx.doi.org/10.5772/intechopen.110907

* Policy management: provides a GUI for editing access policies. It first con-
nects to the policy sharing services in order to obtain the policies from nearby
devices, which are then shown in a Web interface. Next, a user edits and saves
the new policies sent to the respective devices through the policy sharing
service.

* Contract: allows a consumer to establish a service-level agreement with service
providers, including the discovery and selection of suitable services, defining
usage conditions, paying for it, and evaluating the service. It is one of the most
complex Broker services, as it composes the Discovery, Access Control, and
Reputation services and implements two blockchain clients. Creating a contract
involves eight steps, depicted in Figure 3. The first step is to have a registered
service provider (1) available to be contracted. Then, a service consumer tries
to contract (2) a target service, by sending a query to its Broker, which will use
the Discovery service (3) to find services within the Swarm network. After
finding a list of services, the best service is selected (4), using price and reputa-
tion as the sorting criteria. Then, negotiation (5) takes place, which consists of
having the consumer and the provider to accept the proposed contract. If all
goes well, a (6) digital currency payment is made through a blockchain. After
the payment is confirmed, establishing a service-level agreement (7) will be
triggered, causing the service provider to create an access policy allowing the
consumer to use its services. Finally, the two Brokers will evaluate each other

Swarm
Consumer Network Provider 1
Broker Broker
L] L] L L] L]
I 1 l 1 O Registration
[[I - <service
— @ Service Request | | | | description>
<query> | |
© Discovery | I
<query> <query>
— - - - - - [= = - - -
<service <service
description list> description>

— O select
~ ©(a) Negotiation - Optimum Service | | @(n) Negotiation

<SLA> <SLA>
@ SLA Establishment
Notify SLA N
Notify SLA Create
Permission
:]@(a) Compute :IQ(a) Compute
Reputation for ‘ Reputation for

I
I
I
I
I
I
I
I
I
I
[1® Payment 1
I
I
I
I
I
I
|
I
I

Transaction Transaction

T T T
© use . | 1 i
I I I @m)c t [:
j@(b) Compute (b) Compute
Reputation for ! : I Reputation for
— Use ! | I Use

Figure 3.
Swarm broker codebase architecture.

13

Edge Computing — Technology, Management and Integration

Swarm broker stages Services involved
Registration Registry, policy sharing
Cooperation initiation Discovery, contract, access control
Interaction support Distances, access control, policy management,
reputation
Table 1.

Swarm intevaction stages and the main services involved.

and compute a reputation value (8a), the consumer will use the service pro-
vider (9) for alimited amount of time, and reputation for service usage will be
computed (8b).

* Reputation: allows consumers and providers to rate each other. This service
receives the reputation computed by service consumers and providers regarding
a contract they have established and run. These reputations will be forwarded
to a blockchain, which will act as a public ledger for the reputation of all Swarm
services.

* Semantic registry: in addition to the basic functionality of the Registry module,
the Semantic Registry stores the information of available services using a knowl-
edge base that relies on an ontology and has a semantic representation of the
services in the Swarm network. As in the Registry module, the Semantic Registry
receives a service description based on the JSON-LD format, which natively
includes semantic information about the services. Additionally, this module uses
an inference engine to expand the original query and bring compatible services
according to their semantic service description.

The described Broker services give support to application services, allowing them
to be part of the Swarm. Table 1 relates the three stages of Broker support, described
in Section 5, to the services implemented in the Broker.

7. Proof-of-concept

To demonstrate the functionality of the Swarm Broker implementation, we have
developed a use case applying the Swarm to a surveillance application, specifically the
scenario described in the introduction of this article. To implement the scenario, we
use the following services, also shown in Figure 4:

* Personal assistant: the system frontend, capable of natural language process-
ing to identify commands and parameters. Additionally, the Swarm Assistant
reunites information about the person who owns a device group. It might have
information that the owner has a pet, a cat called Penny, and even have some
pictures of it.

* Object finder: a service specialized in finding objects. It discovers and connects
Camera Services to Identification Services.

14

Swarm Computing: The Emergence of a Collective Artificial Intelligence at the Edge...
DOI: http://dx.doi.org/10.5772/intechopen.110907

Extract Action:

Find Penny ®
Find Cat gl

Discover
- Cameras Neighborhood Cameras
- Identification Services

Found Catgd
At Camera &Q.

Cat Found
or Empty

Response
Alice

>
4

Data Acquisition__

Object
Identification

Networks [Data Acquisition’

Persona DB (Pool of Identification Services)

Figure 4.
Finding Penny implementation using the Swarm.

¢ Camera service: a service that makes camera frames available to allowed
consumers.

* Identification service: an image processing service that takes two images as
inputs, a picture of a cat and a camera frame, and returns whether the former
appears in the latter.

It is important to highlight that, Since the Swarm uses a service-oriented approach,
the physical location of devices is not important, except for limiting the scope of the
interactions. In our implementation, each service is implemented in a different device
to exercise the decentralization principle of the Swarm. Thus, each device has exactly
one application service, and one Swarm Broker, that supports the service interactions.
The communication flow of this example is described below:

1. Data acquisition: In this phase, the Persona Database is pre-populated. The
“Persona” is a concept adopted by the Swarm to digitally represent human users.
In our scenario, the Persona Database contains data about Alice, such as prefer-
ences, friends, and pets. This information may be manually inserted by Alice, or
automatically extracted from her social networks, or a combination of both.

2. Voice command: issued by Alice, it is processed by the Swarm Assistant, an app
that serves as an interface between users and the Swarm.

3. Extract action: using a Speech-to-Text service, the assistant obtains the action
and other parameters from a voice command. In this case, the action *"Find” and
the string “Penny,” an unknown parameter, are extracted.

4. Parameters qualification: the assistant consults the Persona Database to get
information about the extracted parameters. In this case, it learns that the object
that it must Find is a Cat, obtains a picture of the cat, and also gets Alice’s default
preferences about the radius of object searches.

5.Find cat: the assistant uses the swarm network to discover an Object Finder, a
service specialized in finding objects, and then asks the Object Finder to search
for a cat, passing the cat’s picture, and a radius relative to Alice’s smartphone
position, where the cat must be searched.

6. Discover cameras and detection services: based on Alice’s preferences, the Ob-
ject Finder will find the addresses of available cameras in her neighborhood and
one or more Object Identification services.

15

Edge Computing — Technology, Management and Integration

7.1dentify cat: for each of the discovered cameras, the Object Finder will call an
Object Identification service, passing the address of the camera, the category of
the object (i.e., cat), and a picture of the specific object that must be found. If
there are less identification services than cameras, the requests will be enqueued
and sent when an identification service becomes available.

8.Stream: each identification service will gather one camera’s stream, and try to
detect a cat. If successful, it will compare with the provided cat picture. Finally,
if there is a match, the frame with the found cat will be returned, along with the
position of the camera that captured the frame.

9. The frame and the location of the found cat are returned to Alice’s Swarm As-
sistant. Now Alice knows where is Penny, her missing cat.

8. Discussion

As pointed out in the challenges section, communication and cooperation con-
stitute the main challenges in the future of IoT. The importance of communication
can be observed in two main areas: device-to-device and human-to-device. In the
first case, we identify a research opportunity for autonomous intelligent agents
to overcome the complexity of the resulting network. Regarding the second case,
which involves human-to-device communication, we clearly see the need to deeply
explore the understanding of human language, with emphasis on human commands.
As the number of devices available to every person grows, a concise way to perform
tasks involving several devices is more important. Recent advances in tools such
as ChatGPT show the relevance of the convergence between the IoT and Natural
Language Processing (NLP).

9. Conclusions

In this chapter, we have presented the Swarm computing vision, a decentralized
and self-adaptive approach to overcome the limitations of cloud-centric architecture
for the IoT. We presented the principles that have driven the conception of the Swarm
and summarized the main challenges to achieving its realization: communication
and cooperation of devices, the inclusion of resource-constrained devices, better
interfaces for human-interaction, and the complex nature of the network. We also
proposed an initial architecture, whose main component is the Broker, a commu-
nication mediator that aims to solve the interoperability of devices in the Swarm
network. Besides, we listed a selection of technologies that enabled our implementa-
tion and described an application example that illustrates the potential of the Swarm
network. Our advances in coping with the Swarm challenges can be summarized as
follows. We developed four Broker implementations, using different programming
languages: C, Lua, Java, and Elixir. We developed a minimum Broker implementation.
We adopted open Web semantic technologies that facilitate device communication;
we implemented a mechanism of semantic service discovery as a starting point for
cooperation; and we implemented a CoAP-HTTP proxy that leverages transparent
communication with resource-constrained devices with minimum impact. Additional
effort is needed in all fronts of Swarm challenges to concretize the vision.

16

Swarm Computing: The Emergence of a Collective Artificial Intelligence at the Edge...
DOI: http://dx.doi.org/10.5772/intechopen.110907

Acknowledgements
We could not have undertaken this journey without Dr. Jan Rabaey and inspiring
work and talks. We would like to express our gratitude to CITI-USP.

This work was partially supported by LSI-Tec; FUNDEP-Rota2030, Stellantis and
CEABS; MCTI and BNDES.

Author details

Laisa Costa de Biase®, Geovane Fedrecheski, Pablo Calcina-Ccori, Roseli Lopes
and Marcelo Zuffo

Escola Politecnica of the University of Sao Paulo, Sao Paulo, Brazil

*Address all correspondence to: laisa.costa@usp.br

IntechOpen

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

17

Edge Computing — Technology, Management and Integration

References

[1] International Telecommunication
Union. Overview of the Internet of Things.
Geneva, Switzerland: International
Telecommunication Union; 2012

[2] IoT Analytics. Global IoT market

size to grow 19% in 2023—IoT shows
resilience despite economic downturn
[Internet]. 2023. Available from: https://
iot-analytics.com/iot-market-size/

[3]1 ShiW, CaoJ, Zhang Q, LiY, Xu L.
Edge computing: Vision and challenges.
IEEE Internet of Things Journal.
2016;3(5):637-646

[4] Shi W, Pallis G, Xu Z. Edge computing
[Scanning the Issue]. Proceedings of the
IEEE. 2019;107:1474-1781

[5] Weiser M. The computer for the
21st century. Scientific American.
1991;265(3):94-105

[6] Abeywickrama DB, Ovaska E. A
survey of autonomic computing methods
in digital service ecosystems. Service-
Oriented Computing and Applications.
2017;11(1):1-31

[7] Boley H, Chang E. Digital ecosystems:
Principles and semantics. In: 2007
Inaugural IEEE-IES Digital EcoSystems
and Technologies Conference, Cairns,
QLD, Australia, 2007. pp. 398-403

[8] Atzori L, Iera A, Morabito G. From
“smart objects” to “social objects”: The
next evolutionary step of the internet of
things. IEEE Communications Magazine.
2014;52(1):97-105

[9] Chiang M, Ha S, Risso F, Zhang T,
Chih-Lin I. Clarifying fog computing and
networking: 10 questions and answers.

IEEE Communications Magazine.
2017;55(4):18-20

18

[10] Maliniak D. Visions Of The Future
(Part 1): A Ubiquitous Cloud Of
Computing. In Electronic Computer.
Sept. 15, 2008. Available from: https://
www.electronicdesign.com/markets/
mobile/article/21778269/visions-of-the-
future-part-1-a-ubiquitous-cloud-of-
computing

[11] Lee EA, Hartmann B, Kubiatowicz J,

Rosing TS, Wawrzynek J, Wessel D, et al.
The swarm at the edge of the cloud. IEEE
Design & Test. 2014;31(3):8-20

[12] Alippi C, Fantacci R, Marabissi D,
Roveri M. A cloud to the ground:

The new frontier of intelligent and
autonomous networks of things.
IEEE Communications Magazine.
2016;54(12):14-20

[13] Costa LC, Rabaey], Wolisz A,
Rosan M, Zuffo MK. Swarm os control
plane: An architecture proposal for
heterogeneous and organic networks.
IEEE Transactions on Consumer

Electronics. 2015;61(4):454-462

[14] Rabaey JM. The human intranet—
Where Swarms and humans meet. IEEE
Pervasive Computing. 2015;14(1):78-83

[15] Fedrecheski G, Rabaey JM, Costa LC,
Ccori PCC, Pereira WT, Zuffo MK. Self-
sovereign identity for IoT environments:
A perspective. In: 2020 Global Internet
of Things Summit (GIoTS). Dublin,
Ireland. 2020. pp. 1-6

[16] Bartolomeu PC, Vieira E,

Hosseini SM, Ferreira J. Self-sovereign
identity: Use-cases, technologies, and
challenges for industrial iot. In: 2019
24th IEEE International Conference on
Emerging Technologies and Factory
Automation (ETFA), Zaragoza, Spain.
2019. pp. 1173-1180

Swarm Computing: The Emergence of a Collective Artificial Intelligence at the Edge...

DOI: http://dx.doi.org/10.5772/intechopen.110907

[17] Mili¢ L, Jelenkovié¢ L. A novel
versatile architecture for internet of
things. In: 2015 38th International
Convention on Information and
Communication Technology, Electronics
and Microelectronics (MIPRO), Opatija,
Croatia; 2015. pp. 1026-1031

[18] Sethi P, Sarangi SR. Internet of
things: Architectures, protocols, and
applications. Journal of Electrical and
Computer Engineering. 2017;2017.
Article ID 9324035, pages 25

[19] Salah T, Zemerly M]J, Yeun CY,
Al-Qutayri M, Al-Hammadi Y. The
evolution of distributed systems towards
microservices architecture. In: 2016 11th
International Conference for Internet
Technology and Secured Transactions
(ICITST); Barcelona, Spain. 2016. pp.
318-325

[20] Hunkeler U, Truong HL,
Stanford-Clark A. MQTT-S—A publish/
subscribe protocol for wireless sensor
networks. In: 2008 3rd International
Conference on Communication

Systems Software and Middleware

and Workshops (COMSWARE'08);
Bangalore, India. 2008. pp. 791-798

[21] FIWARE Foundation. Fiware. The
Internet. 2023. Available from: https://
www.fiware.org/

[22] De Biase LC, Calcina-Ccori PC,
Fedrecheski G, Duarte GM, Rangel PS,
Zuffo MK. Swarm economy: A model for
transactions in a distributed and organic
iot platform. IEEE Internet of Things
Journal. 2018;6(3):4561-4572

[23] Calcina-Ccori PC, De Biase LCC,
Fedrecheski G, da Silva FSC, Zuffo MK.
Enabling semantic discovery in the
swarm. IEEE Transactions on Consumer

Electronics. 2018;65(1):57-63

[24] De Biase LC, Ccori PC,
Fedrecheski G, Navarro D, Lino RY,

19

Zuffo MK. Swarm minimum broker:
An approach to deal with the internet
of things heterogeneity. In: 2018 Global
Internet of Things Summit (GIoTS).
Bilbao, Spain: IEEE; 2018. pp. 1-6

[25] Esquiagola J, Costa L, Calcina P,
Zuffo M. Enabling CoAP into the swarm:
A transparent interception CoAP-HTTP
proxy for the internet of things. In:

2017 Global Internet of Things Summit
(GIoTS). Geneva, Switzerland. 2017. pp.
1-6

